- Jacobi differential equation
- Математика: дифференциальное уравнение Якоби
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Partial differential equation — A visualisation of a solution to the heat equation on a two dimensional plane In mathematics, partial differential equations (PDE) are a type of differential equation, i.e., a relation involving an unknown function (or functions) of several… … Wikipedia
List of partial differential equation topics — This is a list of partial differential equation topics, by Wikipedia page. Contents 1 General topics 2 Specific partial differential equations 3 Numerical methods for PDEs 4 … Wikipedia
Hamilton-Jacobi-Bellman equation — The Hamilton Jacobi Bellman (HJB) equation is a partial differential equation which is central to optimal control theory.The solution of the HJB equation is the value function , which gives the optimal cost to go for a given dynamical system with … Wikipedia
Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… … Wikipedia
Jacobi field — In Riemannian geometry, a Jacobi field is a vector field along a geodesic gamma in a Riemannian manifold describing the difference between the geodesic and an infinitesimally close geodesic. In other words, the Jacobi fields along a geodesic form … Wikipedia
Jacobi, Carl — ▪ German mathematician in full Carl Gustav Jacob Jacobi born December 10, 1804, Potsdam, Prussia [Germany] died February 18, 1851, Berlin German mathematician who, with Niels Henrik Abel (Abel, Niels Henrik) of Norway, founded the theory… … Universalium
Jacobi's elliptic functions — In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions, and auxiliary theta functions, that have historical importance with also many features that show up important structure, and have direct relevance to some… … Wikipedia
Jacobi eigenvalue algorithm — The Jacobi eigenvalue algorithm is a numerical procedure for the calculation of all eigenvalues and eigenvectors of a real symmetric matrix. Description Let varphi in mathbb{R}, , 1 le k < l le n and let J(varphi, k, l) denote the n imes n matrix … Wikipedia
Differential algebra — In mathematics, differential rings, differential fields, and differential algebras are rings, fields, and algebras equipped with a derivation, which is a unary function that is linear and satisfies the Leibniz product law. A natural example of a… … Wikipedia
Jacobi polynomials — In mathematics, Jacobi polynomials are a class of orthogonal polynomials. They are obtained from hypergeometric series in cases where the series is in fact finite::P n^{(alpha,eta)}(z)=frac{(alpha+1) n}{n!}, 2F 1left(… … Wikipedia
Hamilton–Jacobi equation — In physics, the Hamilton–Jacobi equation (HJE) is a reformulation of classical mechanics and, thus, equivalent to other formulations such as Newton s laws of motion, Lagrangian mechanics and Hamiltonian mechanics. The Hamilton–Jacobi equation is… … Wikipedia